FunASR希望在语音识别方面建立学术研究和工业应用之间的桥梁。通过支持在ModelScope上发布的工业级语音识别模型的训练和微调,研究人员和开发人员可以更方便地进行语音识别模型的研究和生产,并促进语音识别生态系统的发展。
最新动态
| 环境安装
| 介绍文档
| 中文教程
| 服务部署
| 模型库
| 联系我们
Paraformer是达摩院语音团队提出的一种高效的非自回归端到端语音识别框架。本项目为Paraformer中文通用语音识别模型,采用工业级数万小时的标注音频进行模型训练,保证了模型的通用识别效果。模型可以被应用于语音输入法、语音导航、智能会议纪要等场景。
Paraformer模型结构如上图所示,由 Encoder、Predictor、Sampler、Decoder 与 Loss function 五部分组成。Encoder可以采用不同的网络结构,例如self-attention,conformer,SAN-M等。Predictor 为两层FFN,预测目标文字个数以及抽取目标文字对应的声学向量。Sampler 为无可学习参数模块,依据输入的声学向量和目标向量,生产含有语义的特征向量。Decoder 结构与自回归模型类似,为双向建模(自回归为单向建模)。Loss function 部分,除了交叉熵(CE)与 MWER 区分性优化目标,还包括了 Predictor 优化目标 MAE。
其核心点主要有:
更详细的细节见:
本项目提供的预训练模型是基于大数据训练的通用领域识别模型,开发者可以基于此模型进一步利用ModelScope的微调功能或者本项目对应的Github代码仓库FunASR进一步进行模型的领域定制化。
对于有开发需求的使用者,特别推荐您使用Notebook进行离线处理。先登录ModelScope账号,点击模型页面右上角的“在Notebook中打开”按钮出现对话框,首次使用会提示您关联阿里云账号,按提示操作即可。关联账号后可进入选择启动实例界面,选择计算资源,建立实例,待实例创建完成后进入开发环境,进行调用。
import os
import logging
import torch
import soundfile
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.utils.logger import get_logger
logger = get_logger(log_level=logging.CRITICAL)
logger.setLevel(logging.CRITICAL)
os.environ["MODELSCOPE_CACHE"] = "./"
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online',
model_revision='v1.0.6',
mode="paraformer_streaming"
)
model_dir = os.path.join(os.environ["MODELSCOPE_CACHE"], "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online")
speech, sample_rate = soundfile.read(os.path.join(model_dir, "example/asr_example.wav"))
speech_length = speech.shape[0]
sample_offset = 0
chunk_size = [5, 10, 5] #[5, 10, 5] 600ms, [8, 8, 4] 480ms
stride_size = chunk_size[1] * 960
param_dict = {"cache": dict(), "is_final": False, "chunk_size": chunk_size}
final_result = ""
for sample_offset in range(0, speech_length, min(stride_size, speech_length - sample_offset)):
if sample_offset + stride_size >= speech_length - 1:
stride_size = speech_length - sample_offset
param_dict["is_final"] = True
rec_result = inference_pipeline(audio_in=speech[sample_offset: sample_offset + stride_size],
param_dict=param_dict)
if len(rec_result) != 0:
final_result += rec_result['text'] + " "
print(rec_result)
print(final_result)
运行范围
使用方式
使用范围与目标场景
考虑到特征提取流程和工具以及训练工具差异,会对CER的数据带来一定的差异(<0.1%),推理GPU环境差异导致的RTF数值差异。
@inproceedings{gao2022paraformer,
title={Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition},
author={Gao, Zhifu and Zhang, Shiliang and McLoughlin, Ian and Yan, Zhijie},
booktitle={INTERSPEECH},
year={2022}
}