给定一张输入图像,输出图像中人体的坐标。
本模型适用范围较广,覆盖室内外、监控、单人多人等大部分场景。
在ModelScope框架上,提供输入图片,即可以通过简单的Pipeline调用使用当前模型。
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
object_detect = pipeline(Tasks.human_detection,model='damo/cv_resnet18_human-detection')
img_path = 'https://modelscope.oss-cn-beijing.aliyuncs.com/test/images/image_detection.jpg'
result = object_detect(img_path)
print(result)
模型在COCO2017val-human子集上进行测试,mAP为59.8%
若希望使用稳定高并发的API服务,可使用视觉智能开放平台对应的API:人体检测API。
@InProceedings{Dai_2021_CVPR,
author = {Dai, Xiyang and Chen, Yinpeng and Xiao, Bin and Chen, Dongdong and Liu, Mengchen and Yuan, Lu and Zhang, Lei},
title = {Dynamic Head: Unifying Object Detection Heads With Attentions},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2021},
pages = {7373-7382}
}
@inproceedings{renNIPS15fasterrcnn,
Author = {Shaoqing Ren and Kaiming He and Ross Girshick and Jian Sun},
Title = {Faster {R-CNN}: Towards Real-Time Object Detection
with Region Proposal Networks},
Booktitle = {Advances in Neural Information Processing Systems ({NIPS})},
Year = {2015}
}