2023年2月:
2022年12月:
该模型是基于检索增强(RaNer)方法在多语言数据集MultiCoNER-MULTI-Multilingual训练的模型。 本方法采用Transformer-CRF模型,使用XLM-RoBERTa作为预训练模型底座,结合使用外部工具召回的相关句子作为额外上下文,使用Multi-view Training方式进行训练。
模型结构如下图所示:
可参考论文:Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning
本模型主要用于给输入多语言句子产出命名实体识别结果。用户可以自行尝试输入多语言句子。具体调用方式请参考代码示例。
在安装ModelScope完成之后即可使用named-entity-recognition(命名实体识别)的能力, 默认单句长度不超过512。
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
ner_pipeline = pipeline(Tasks.named_entity_recognition, 'damo/nlp_raner_named-entity-recognition_multilingual-large-generic')
result = ner_pipeline('the big bang theory s johnny galecki war einer der internationalen gäste .')
print(result)
AdaSeq是一个基于ModelScope的一站式NLP序列理解开源工具箱,支持高效训练自定义模型,旨在提高开发者和研究者们的开发和创新效率,助力模型快速定制和前沿论文工作落地。
pip install adaseq
准备训练配置,将下面的代码保存为train.yaml。
该配置中的数据集为示例数据集toy_msra,如需使用自定义数据或调整参数,可参考《AdaSeq模型训练最佳实践》,准备数据或修改配置文件。AdaSeq中也提供了大量的模型、论文、比赛复现示例,欢迎大家使用。
experiment:
exp_dir: experiments/
exp_name: toy_msra
seed: 42
task: named-entity-recognition
dataset:
name: damo/toy_msra
preprocessor:
type: sequence-labeling-preprocessor
max_length: 100
data_collator: SequenceLabelingDataCollatorWithPadding
model:
type: sequence-labeling-model
embedder:
model_name_or_path: damo/nlp_raner_named-entity-recognition_multilingual-large-generic
dropout: 0.1
use_crf: true
train:
max_epochs: 5
dataloader:
batch_size_per_gpu: 8
optimizer:
type: AdamW
lr: 5.0e-5
param_groups:
- regex: crf
lr: 5.0e-1
options:
cumulative_iters: 4
evaluation:
dataloader:
batch_size_per_gpu: 16
metrics:
- type: ner-metric
运行命令开始训练。在GPU上训练需要至少6G显存,可以根据实际GPU情况调整batch_size等参数。
adaseq train -c train.yaml
模型会保存在 ./experiments/toy_msra/${yymmddHHMMSS.ffffff}/output/
可以将上文推理示例代码中的model_id替换为本地路径(绝对路径)进行推理
保存的模型也可上传到ModelScope进行使用
本模型基于CoNER-MULTI-Multilingual数据集上训练,在垂类领域多语言文本上的NER效果会有降低,请用户自行评测后决定如何使用。
实体类型 | 英文名 |
---|---|
公司名 | CORP |
创作名 | CW |
其他组织名 | GRP |
地名 | LOC |
人名 | PER |
消费品 | PROD |
模型在CoNER-MULTI-Multilingual验证数据评估结果:
Dataset | Precision | Recall | F1 |
---|---|---|---|
CoNER-MULTI-Multilingual | 93.98 | 94.11 | 94.05 |
各个类型的性能如下:
Dataset | Precision | Recall | F1 |
---|---|---|---|
CORP | 92.9 | 91.83 | 92.36 |
CW | 92.94 | 93.45 | 93.19 |
GRP | 93.18 | 92.61 | 92.9 |
LOC | 95.86 | 96.35 | 96.1 |
PER | 96.4 | 97.05 | 96.72 |
PROD | 90.77 | 91.02 | 90.89 |
如果你觉得这个该模型对有所帮助,请考虑引用下面的相关的论文:
@inproceedings{wang-etal-2021-improving,
title = "Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning",
author = "Wang, Xinyu and
Jiang, Yong and
Bach, Nguyen and
Wang, Tao and
Huang, Zhongqiang and
Huang, Fei and
Tu, Kewei",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.142",
pages = "1800--1812",
}
@inproceedings{wang-etal-2022-damo,
title = "{DAMO}-{NLP} at {S}em{E}val-2022 Task 11: A Knowledge-based System for Multilingual Named Entity Recognition",
author = "Wang, Xinyu and
Shen, Yongliang and
Cai, Jiong and
Wang, Tao and
Wang, Xiaobin and
Xie, Pengjun and
Huang, Fei and
Lu, Weiming and
Zhuang, Yueting and
Tu, Kewei and
Lu, Wei and
Jiang, Yong",
booktitle = "Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.semeval-1.200",
pages = "1457--1468",
}