主要是针对长尾和小目标问题解决的高性能通用目标检测模型,采用COCO数据集训练。本模型基于Resnet50-Backbone增加可形变卷积等模块增强多角度单目标识别的精度;在Neck、RPN-head和ROI-head针对长尾和小目标问题进行了模型优化,以适用特定场景下痛点问题的解决。
本模型适用范围较广,能对图片中包含的大部分前景物体(COCO 80类)进行定位。
在ModelScope框架上,提供输入图片,即可以通过简单的Pipeline调用使用当前模型。暂不支持cpu。
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
object_detect = pipeline(Tasks.image_object_detection,model='damo/cv_resnet50_object-detection_maskscoring')
img_path ='https://modelscope.oss-cn-beijing.aliyuncs.com/test/images/image_detection.jpg'
result = object_detect(img_path)
print(result)
Backbone | Pretrain | Box mAP_s | Remark | Log |
---|---|---|---|---|
R-50-FPN | ImageNet-1k | 22.9 | MaskRCNN | log |
R-50-FPN | ImageNet-1k | 21.7 | MaskScoringRCNN | log |
R-50-FPN-BFP | ImageNet-1k | 27.8 | modelscope | log |
@article{He_2017,
title={Mask R-CNN},
journal={2017 IEEE International Conference on Computer Vision (ICCV)},
publisher={IEEE},
author={He, Kaiming and Gkioxari, Georgia and Dollar, Piotr and Girshick, Ross},
year={2017},
month={Oct}
}
@inproceedings{huang2019msrcnn,
title={Mask Scoring R-CNN},
author={Zhaojin Huang and Lichao Huang and Yongchao Gong and Chang Huang and Xinggang Wang},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
year={2019},
}