This project provides the baseline model and evaluation code for track1 and track2 for CVPR 2023 NTIRE workshop Video Colorization Challenge.
conda create -n video_colorization python=3.7
conda activate video_colorization
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu116
git clone https://github.com/piddnad/CVPR2023_NTIRE_Video_Colorization.git
cd CVPR2023_NTIRE_Video_Colorization
pip install -r requirements/tests.txt
pip install -r requirements/framework.txt
pip install -r requirements/cv.txt
You can Run the code below to download the validation set:
from modelscope.msdatasets import MsDataset
from modelscope.utils.constant import DownloadMode
# Set dataset download path
cache_dir = './datasets'
# Download validation set
val_set = MsDataset.load('ntire23_video_colorization', namespace='damo', subset_name='val_frames', split='validation', cache_dir=cache_dir, download_mode=DownloadMode.FORCE_REDOWNLOAD)
print(next(iter(val_set)))
This step will automatically download the validation set.
cd CVPR2023_NTIRE_Video_Colorization
CUDA_VISIBLE_DEVICES=0 PYTHONPATH=. python ntire23_scripts/baseline_evaluation.py
# Then you might get output similar to:
# FID evaluation time: xxxx
# CDC evaluation time: xxxx
# Total evaluation time: xxxx
# FID: 47.15574537543114, CDC: 0.003475072230336491
First modify the res_dir
in user_result_evaluation.py, and then run:
python ntire23_scripts/user_result_evaluation.py
git clone https://www.modelscope.cn/damo/CVPR2023_NTIRE_Video_Colorization.git