图文蕴含即根据给定的图片和文本判断其语义关系,从“entailment”、“contradiction”和“neutrality”三种关系中选出。
本系列还有如下模型,欢迎试用:
玩转OFA只需区区以下数行代码,就是如此轻松!如果你觉得还不够方便,请点击右上角Notebook
按钮,我们为你提供了配备了GPU的环境,你只需要在notebook里输入提供的代码,就可以把OFA玩起来了!
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.outputs import OutputKeys
ofa_pipe = pipeline(
Tasks.visual_entailment,
model='damo/ofa_visual-entailment_snli-ve_distilled_v2_en')
image = 'https://xingchen-data.oss-cn-zhangjiakou.aliyuncs.com/maas/visual-entailment/visual_entailment.jpg'
text = 'there are two birds.'
input = {'image': image, 'text': text}
result = ofa_pipe(input)
print(result[OutputKeys.LABELS]) # no
OFA(One-For-All)是通用多模态预训练模型,使用简单的序列到序列的学习框架统一模态(跨模态、视觉、语言等模态)和任务(如图片生成、视觉定位、图片描述、图片分类、文本生成等),详见我们发表于ICML 2022的论文:OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework以及我们的官方Github仓库https://github.com/OFA-Sys/OFA。
Github  |  Paper   |  Blog
本模型是在对OFA的large模型版本基础上通过知识蒸馏进行轻量化而得到的tiny版本模型(参数量33M),方便用户部署在存储和计算资源受限的设备上。蒸馏框架介绍,详见论文:Knowledge Distillation of Transformer-based Language Models Revisited,以及我们的官方Github仓库https://github.com/OFA-Sys/OFA-Compress
模型效果如下:
具体指标如下:
Task | SNLI-VE | |
---|---|---|
Split | val | test |
OFA-tiny (直接finetune得到) |
85.3 | 85.2 |
OFA-distill-tiny (通过蒸馏得到) |
87.0 | 86.9 |
本模型训练数据集是snli-ve数据集。
开发中,敬请等待。
训练数据集自身有局限,有可能产生一些偏差,请用户自行评测后决定如何使用。
如果你觉得这个该模型对有所帮助,请考虑引用下面的相关的论文:
@article{Lu2022KnowledgeDO,
author = {Chengqiang Lu and
Jianwei Zhang and
Yunfei Chu and
Zhengyu Chen and
Jingren Zhou and
Fei Wu and
Haiqing Chen and
Hongxia Yang},
title = {Knowledge Distillation of Transformer-based Language Models Revisited},
journal = {ArXiv},
volume = {abs/2206.14366}
year = {2022}
}
@article{wang2022ofa,
author = {Peng Wang and
An Yang and
Rui Men and
Junyang Lin and
Shuai Bai and
Zhikang Li and
Jianxin Ma and
Chang Zhou and
Jingren Zhou and
Hongxia Yang},
title = {OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence
Learning Framework},
journal = {CoRR},
volume = {abs/2202.03052},
year = {2022}
}