目前存在两个问题:
1.训练不足导致,不同图像显示出的效果比较大,我尽量挑几张效果好的展示一下,这个之后有空再炼一炼。
2.什么风格才算是二次元风格,二次元图像纹理对于DCT-Net的影响是?这个有空我再看看。
5月1日更新v1.0.2版本
稍微炼了一下,风格似乎更明显了,或者说是更阴间了……
米游社的新活动“无尽的三月七”
安利一下目前最近比较火的人物风格化小应用,不过这个一眼就是diffusion那一套finetune出来的,和DCT-Net应该区别不小。
输入一张人物图像,实现端到端全图卡通化转换,生成二次元虚拟形象,返回卡通化后的结果图像。
使用方式:
使用范围:
目标场景:
在ModelScope框架上,提供输入图片,即可以通过简单的Pipeline调用来使用人像卡通化模型-原神风格。
import cv2
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
img_cartoon = pipeline(Tasks.image_portrait_stylization,
model='lskhh/DCT_Net_finetune_on_genshin',model_revision='v1.0.2')
# 图像本地路径
#img_path = 'input.png'
# 图像url链接
img_path = 'https://modelscope.oss-cn-beijing.aliyuncs.com/test/images/image_cartoon.png'
result = img_cartoon(img_path)
cv2.imwrite('result.png', result[OutputKeys.OUTPUT_IMG])
print('finished!')
低质/低分辨率人脸图像由于本身内容信息丢失严重,无法得到理想转换效果,可预先采用人脸增强模型预处理图像解决;
小样本数据涵盖场景有限,人脸暗光、阴影干扰可能会影响生成效果。
训练数据从公开数据集(COCO等)、互联网搜索人像图像,并进行标注作为训练数据。
真实人脸数据FFHQ常用的人脸公开数据集,包含7w人脸图像;
卡通人脸数据,互联网搜集,100+张
二次训练数据集:DCT-Net人像卡通化-原神头像
二次训练数据集为网络上找的数据集。
使用CelebA公开人脸数据集进行评测,在FID/ID/用户偏好等指标上均达SOTA结果:
Method | FID | ID | Pref.A | Pref.B |
---|---|---|---|---|
CycleGAN | 57.08 | 0.55 | 7.1 | 1.4 |
U-GAT-IT | 68.40 | 0.58 | 5.0 | 1.5 |
Toonify | 55.27 | 0.62 | 3.7 | 4.2 |
pSp | 69.38 | 0.60 | 1.6 | 2.5 |
Ours | 35.92 | 0.71 | 82.6 | 90.5 |
如果该模型对你有所帮助,请引用相关的论文:
@inproceedings{men2022domain,
title={DCT-Net: Domain-Calibrated Translation for Portrait Stylization},
author={Men, Yifang and Yao, Yuan and Cui, Miaomiao and Lian, Zhouhui and Xie, Xuansong},
journal={ACM Transactions on Graphics (TOG)},
volume={41},
number={4},
pages={1--9},
year={2022}
}