燃灯-T5-Char-700M-多任务-中文
在Randeng-T5-Char-700M的基础上,收集了100个左右的中文数据集,进行Text2Text统一范式的有监督任务预训练。
  • 模型资讯
  • 模型资料

Randeng-T5-Char-700M-MultiTask-Chinese

简介 Brief Introduction

在Randeng-T5-Char-700M的基础上,收集了100个左右的中文数据集,进行Text2Text统一范式的有监督任务预训练。

On the basis of Randeng-T5-Char-700M, about 100 Chinese datasets were collected and pre-trained for the supervised task of Text2Text unified paradigm.

模型分类 Model Taxonomy

需求 Demand 任务 Task 系列 Series 模型 Model 参数 Parameter 额外 Extra
通用 General 自然语言转换 NLT 燃灯 Randeng MultiTask 700M 多任务-中文 MultiTask-Chinese

模型信息 Model Information

参考论文:Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

基于Randeng-T5-Char-700M-Chinese,我们在收集的100+个中文领域的多任务数据集(从中采样了30w+个样本)上微调了它,得到了此多任务版本。这些多任务包括:情感分析,新闻分类,文本分类,意图识别,自然语言推理,多项选择,指代消解,抽取式阅读理解,实体识别,关键词抽取,生成式摘要。

Based on Randeng-T5-Char-700M-Chinese, we fine-tuned it on a collection of 100+ multitasking datasets in Chinese domains (from which 30w+ samples were sampled) to obtain this multitasking version. These multitasks include: sentiment analysis, news classification, text classification, intention recognition, natural language inference, multiple choice, denotational disambiguation, extractive reading comprehension, entity recognition, keyword extraction, and generative summarization.

使用 Usage

from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks


pipeline_ins = pipeline(
                'text2text-generation', 
                model='Fengshenbang/Randeng-T5-Char-700M-MultiTask-Chinese',
                model_revision='v1.0.0'
)

print(pipeline_ins('情感分析任务:【房间还是比较舒适的,酒店服务良好】这篇文章的情感态度是什么?正面/负面'))

预训练或微调 prtrain or finetune

如果您对于怎么预训练Randeng-T5模型或者想在自己的下游任务中微调Randeng模型,欢迎使用Fengshenbang-LM项目,这里提供了完整的示例:

If you want to pre train the Randeng T5 model or fine tune the Randeng model in your downstream tasks, welcome to use [Fengshenbang LM]( https://github.com/IDEA-CCNL/Fengshenbang-LM/ )A complete example of the project is provided here:

引用 Citation

如果您在您的工作中使用了我们的模型,可以引用我们的论文

If you are using the resource for your work, please cite the our paper:

@article{fengshenbang,
  author    = {Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen and Ruyi Gan and Jiaxing Zhang},
  title     = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence},
  journal   = {CoRR},
  volume    = {abs/2209.02970},
  year      = {2022}
}

也可以引用我们的网站:

You can also cite our website:

@misc{Fengshenbang-LM,
  title={Fengshenbang-LM},
  author={IDEA-CCNL},
  year={2021},
  howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
}